Prioritätenstreit?

Dieses Thema im Forum "Geschichte der Naturwissenschaften" wurde erstellt von Mathematik, 15. Mai 2011.

  1. Mathematik

    Mathematik Gast

    Ich habe eine Frage: Wer ist nun eigentlich der neuzeitliche Wiederentdecker (denn Archimedes soll sie ja schon gekannt haben), der Integralrechnung? Newton oder Leibniz?

    Und stimmt es, dass dieser Streit unter Mathematikern die "angelsächsichen" (britischen) und kontinentaleuropäischen Mathematiker fast ein Jahrhundert getrennt hat?
     
  2. Lili

    Lili Neues Mitglied

    Der Ansatz des Archimedes zur Integralrechnung ging nicht verloren, sondern wurde das ganze Mittelalter hindurch genutzt. Leibnitz und Newton entwickelten lediglich die Art der Berechnung weiter und entwickelten so die Infinitesimalrechnung. Man geht heute übrigens davon aus, dass beide die Infinitesimalrechnung unaghängig voneinander entwickelten (Newton veröffentlichte drei Jahre nach Leibnitz - die Leibnitzsche Methode ist das, was man noch heute in der Oberstufe lernt).

    Ja, das stimmt. Allerdings lag das nicht am Grundsatzstreit, sondern daran, dass Newton eine Plagiatsklage bei der Royal Society einreichte, die Leibnitz schuldig sprach.
     
  3. Mathematik

    Mathematik Gast

    Okay, da habe ich mich unklar ausgedrückt.

    Wieso haben das die Wissenschaftler damals einfach so hingenommen?

    Bzw. wie konnte es überhaupt deshalb zu einer Spaltung, einem "Schisma" kommen? Wurde die Einfuhr von (mathematischen) Büchern aus Europa verboten?

    Gibt es einen Vergleich dazwischen und der Isolation der deutschen Wissenschaftler nach dem 1. Weltkrieg?
     
  4. Lili

    Lili Neues Mitglied

    Haben sie doch nicht, ansonsten hätte es doch die Spaltung nicht gegeben.

    England liegt auch in Europa :winke: Und nein, es war eher ein Wissenschaftlerstreit, als ein wirkliches Schisma.

    Nein, die Isolation der englischen Mathematiker war nur sehr bedingt Zwang, sondern vielmehr im größten Teil selbst gewählt.
     
  5. Börlinär

    Börlinär Gast

    Und wie wurde das im (Rest-)Europa aufgenommen? Die werden sich wohl kaum gefreut haben, dass England sein eigenes Ding drehen will, oder?
    Damals nahm die Entwicklung der Wissenschaft als Internationaler Betrieb doch erst seinen Anfang.

    Hat die Entwicklung denn nennenswerte neue Ansätze oder alternative Sichtweisen ergeben?
    Boole wurde doch problemlos rezipiert.
     
  6. Lili

    Lili Neues Mitglied

    Dazu bin ich leider überfragt, aber ich vermute, wie jeder andere Wissenschaftlerstreit auch heute noch.

    Welche Entwicklung meinst du denn jetzt genau?

    Ja, die Resriktionen gingen auch eher von der Royal Society gegenüber ihren Mitgliedern aus, als dass es eine deutsche Dachorganisation gegeben hätte, die entsprechend interveniert hat.
     
  7. Brissotin

    Brissotin Aktives Mitglied

    Ich hatte aber schon gelesen, dass man damals generell eigentlich sehr lax mit dem Urheberrecht umging. Deswegen hatte der Streit der Royal Society wahrscheinlich doch damals beinahe Seltenheitswert.:grübel:
     
  8. Lili

    Lili Neues Mitglied

    Ich versuche es mal nett zu formulieren... Leibniz hatte immerhin drei Jahre vor Newton veröffentlicht (1684 Leibnitz und 1687 Newton) und soll, laut Newton, angeblich aus einem Briefwechsel zwischen den beiden aus den 1670ern abgeschrieben haben - selbstverständlich konnte Newton nicht belegen, die behaupteten Briefe hatte Leibniz nicht, entweder gar nicht erhalten oder bereits verschwinden lassen. Allerdings sind beide Ansätze zur Inifinitensimalrechnung sowas von grundverschieden, dass man heute eben von einer zeitgleichen Entwicklung ausgeht. Die ersten Vorwürfe gegen Leibniz kamen erst Mitte der 1690er auf, Klage bei der Royal Society reichte Newton Ende der 1690er ein. Zu einer abschließenden Entscheidung kam die Prüfkommission allerdings erst 1712, kurz nachdem das erste Gesetz, welches Rechte an geistigem Eigentum regelt, in Kraft trat (der sog. Statute of Anne). Ein Schelm... :still:
     
    2 Person(en) gefällt das.

Diese Seite empfehlen